
Enterprise Services Bus (ESB)
and Application Integration



Ongoing Business Challenges for the State

• To reduce the cost of managing State programs
while simultaneously improving the ability to
manage them

• Revolutionize the delivery of services by
destroying the barriers to borderless government
(ie. E-Business - bridging the various interactions
(G2C, G2B, G2G) with Government in a simpler
way)



Why Application/Data Integration?

• Remains one of the top business drivers for CIO’s
• Companies have invested heavily in homegrown

applications and business application suites (SAP,
Oracle, PeopleSoft, Siebel, etc)

• Significant business benefits to linking disparate
business systems

• Historically application integration solutions have
been expensive, proprietary and prohibitively
complex



Why An ESB??

• Uses existing technology
• Standards based
• Non-proprietary
• Uses existing messaging middleware

(HTTP, Biztalk, MQ Series, JMS)
• Easy to use and deploy
• Low implementation and management costs



What is an ESB?
• Standards-based Integration Backbone

– XML, XSLT, XPATH, Java, Javascript
– Message-Oriented Middleware (MOM)
– Web Services
– Transformation and Routing Intelligence

• Similar concept to application integration, but the
underlying architecture is very different
– Less Expensive
– Non-Proprietary
– Simpler Implementation



Web
Services

Web
Services

ESB Overview

Transformation RoutingSOAP SOAP
M

ic
ro

so
ft

A
da

pt
er

JA
V

A
 / 

J2
E

E
A

da
pt

er

C
IC

S/
C

ob
ol

A
da

pt
er

Event HandlerIntegration Logic

Legacy
System

Legacy
System

Legacy
System



CICS / DB2

VB / Oracle

CICS /
VSAM

ASP / SQL
SERVER

Correlation
Web Service Central

Repository

TIPS
CICS/DB2

Rapids
CICS/VSAM

WISMART
CICS/VSAM

Purchase Plus
ASP/SQLServer

W
SD

L
W

SD
L

W
SD

L

W
SD

L

DOA ESB Pilot



The Potential of Enterprise
Service Bus Integration



Integration
Today

• System-driven
integration results in
system-specific
solutions using wide
range of technologies

• A solution is built for
each system



Consequences

• Redundancy - Many solutions to a common problem
• Complexity - Recurrent, changing demands on tech resources
• Fragility - Volatile, strong coupling of apps and data
• Inefficiency - Repeated investment in integration infrastructure
• Low ROI Potential- Poorly suited to reuse
• Disabling - Cost & complexity inhibits sharing resources
• Unmanageable - No enterprise perspective



Examples

• www.wisconsin.gov - Integration of agency data via batch
conversion processes across multiple databases

• DNR / RVR - Real-time web system w/ batch FTP
transmission of transaction data between agencies

• EMSS - HTTP “page scraping” for background checks
• DRL License Renewal - Remote stored procedure invocation

across firewalls via JDBC
• Local Government Sites - land record data integration effort

abandoned



Integration
with ESB

• Enterprise-driven
integration results in
an enterprise solution
using a standard set of
technologies

• A solution is built for
all systems to share



Consequences

• Consistency - A single solution to a common problem
• Stability - Predictable, uniform demands on tech resources
• Durability - Flexible, weak coupling of apps and data
• Efficiency - A single investment in integration infrastructure
• Excellent ROI Potential - Exceptionally suited to reuse
• Enabling - Encourages sharing resources
• Manageable - Clear enterprise perspective



Potential

• Procurement - Enterprise data integration
• Licensing Applications - Collaborative, distributed application

development and deployment
• E-Receipts - Enterprise service sharing
• Tax Calculation - Enterprise enablement of common business

processes
• Criminal Background Checks - Enterprise service sharing
• Integration across government and public sector boundaries




